Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Mol Genet Genomics ; 298(4): 823-836, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2297231

ABSTRACT

Coronavirus 2019 (COVID-19) is a complex disease that affects billions of people worldwide. Currently, effective etiological treatment of COVID-19 is still lacking; COVID-19 also causes damages to various organs that affects therapeutics and mortality of the patients. Surveillance of the treatment responses and organ injury assessment of COVID-19 patients are of high clinical value. In this study, we investigated the characteristic fragmentation patterns and explored the potential in tissue injury assessment of plasma cell-free DNA in COVID-19 patients. Through recruitment of 37 COVID-19 patients, 32 controls and analysis of 208 blood samples upon diagnosis and during treatment, we report gross abnormalities in cfDNA of COVID-19 patients, including elevated GC content, altered molecule size and end motif patterns. More importantly, such cfDNA fragmentation characteristics reflect patient-specific physiological changes during treatment. Further analysis on cfDNA tissue-of-origin tracing reveals frequent tissue injuries in COVID-19 patients, which is supported by clinical diagnoses. Hence, our work demonstrates and extends the translational merit of cfDNA fragmentation pattern as valuable analyte for effective treatment monitoring, as well as tissue injury assessment in COVID-19.


Subject(s)
COVID-19 , Cell-Free Nucleic Acids , Humans , COVID-19/diagnosis , Cell-Free Nucleic Acids/genetics
2.
Zhongguo Dang Dai Er Ke Za Zhi ; 24(10): 1085-1091, 2022 Oct 15.
Article in Chinese | MEDLINE | ID: covidwho-2155735

ABSTRACT

OBJECTIVES: To study the clinical features and prognosis of children and their family members with family clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant infection under the admission mode of parent-child ward. METHODS: A retrospective analysis was performed on the medical data of 190 children and 190 family members with SARS-CoV-2 Omicron variant infection who were admitted to Shanghai Sixth People's Hospital, the designated hospital for coronavirus disease 2019 (COVID-19), April 8 to May 10, 2022. RESULTS: Both the child and adult groups were mainly mild COVID-19, and the proportion of mild cases in the child group was higher than that in the adult group (P<0.05). Respiratory symptoms were the main clinical manifestations in both groups. Compared with the adult group, the child group had higher incidence rates of fever, abdominal pain, diarrhea, and wheezing (P<0.05) and lower incidence rates of nasal obstruction, runny nose, cough, dry throat, throat itching, and throat pain (P<0.05). Compared with the child group, the adult group had higher rates of use of Chinese patent drugs, traditional Chinese medicine decoction, recombinant interferon spray, cough-relieving and phlegm-eliminating drugs, and nirmatrelvir/ritonavir tablets (P<0.05). Compared with the adult group, the child group had a lower vaccination rate of SARS-CoV-2 vaccine (30.5% vs 71.1%, P<0.001) and a shorter duration of positive SARS-CoV-2 nucleic acid (P<0.05). The patients with mild COVID-19 had a shorter duration of positive SARS-CoV-2 nucleic acid than those with common COVID-19 in both groups (P<0.05). The patients with underlying diseases had a longer duration of positive SARS-CoV-2 nucleic acid than those without such diseases in both groups (P<0.05). CONCLUSIONS: Both children and adults with family clusters of SARS-CoV-2 Omicron variant infection manifest mainly mild COVID-19. Despite lower vaccination rate of SARS-CoV-2 vaccine in children, they have rapid disease recovery, with a shorter duration of positive SARS-CoV-2 nucleic acid than adults, under the admission mode of parent-child ward.


Subject(s)
COVID-19 , Nucleic Acids , Adult , Humans , COVID-19/epidemiology , SARS-CoV-2 , Cough , Retrospective Studies , COVID-19 Vaccines , China/epidemiology , Family
3.
Front Public Health ; 10: 1038017, 2022.
Article in English | MEDLINE | ID: covidwho-2109888

ABSTRACT

COVID-19, referred to as new coronary pneumonia, is an acute infectious disease caused by a new type of coronavirus SARS-CoV-2. To evaluate the effect of integrated Chinese medicine and Western medicine in patients with COVID-19 from overseas. Data were collected from 178 COVID-19 patients overseas at First Affiliated Hospital of Xiamen University from April 1, 2021 to July 31, 2021. These patients received therapy of integrated Chinese medicine and western medicine. Demographic data and clinical characteristics were extracted and analyzed. In addition, the prescription which induced less length of PCR positive days and hospitalization days than the median value was obtained. The top 4 frequently used Chinese medicine and virus-related genes were analyzed by network pharmacology and bioinformatics analysis. According to the chest computed tomography (CT) measurement, abnormal lung findings were observed in 145 subjects. The median length of positive PCR/hospitalization days was 7/7 days for asymptomatic subjects, 14/24 days for mild subjects, 10/15 days for moderate subjects, and 14/20 days for severe subjects. The most frequently used Chinese medicine were Scutellaria baicalensis (Huangqin), Glycyrrhiza uralensis (Gancao), Bupleurum chinense (Chaihu), and Pinellia ternata (Banxia). The putative active ingredients were baicalin, stigmasterol, sigmoidin-B, cubebin, and troxerutin. ACE, SARS-CoV-2 3CL, SARS-CoV-2 Spike, SARS-CoV-2 ORF7a, and caspase-6 showed good binding properties to active ingredients. In conclusion, the clinical results showed that integrated Chinese medicine and Western medicine are effective in treating COVID-19 patients from overseas. Based on the clinical outcomes, the putative ingredients from Chinese medicine and the potential targets of SARS-CoV-2 were provided, which could provide a reference for the clinical application of Chinese medicine in treating COVID-19 worldwide.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Retrospective Studies , Medicine, Chinese Traditional , Hospitalization
4.
World J Gastrointest Surg ; 14(9): 1072-1081, 2022 Sep 27.
Article in English | MEDLINE | ID: covidwho-2055790

ABSTRACT

BACKGROUND: Tailgut cysts are defined as congenital cysts that develop in the rectosacral space from the residue of the primitive tail. As a congenital disease, caudal cysts are very rare, and their canceration is even rarer, which makes the disease prone to misdiagnosis and delayed treatment. We describe a case of caudal cyst with adenocarcinogenesis and summarize in detail the characteristics of cases with analytical value reported since 1990. CASE SUMMARY: A 35-year-old woman found a mass in her lower abdomen 2 mo ago. She was asymptomatic at that time and was not treated because of the coronavirus disease 2019 pandemic. Two weeks ago, the patient developed abdominal distension and right waist discomfort and came to our hospital. Except for the high level of serum carcinoembryonic antigen, the medical history and laboratory tests were not remarkable. Magnetic resonance imaging showed a well-defined, slightly lobulated cystic-solid mass with a straight diameter of approximately 10 cm × 9 cm in the presacral space, slightly high signal intensity on T2-weighted imaging, and moderate signal intensity on T1-weighted imaging. The mass was completely removed by laparoscopic surgery. Histopathological examination showed that the lesion was an intestinal mucinous adenocarcinoma, and the multidisciplinary team decided to implement postoperative chemotherapy. The patient recovered well, the tumor marker levels returned to normal, and tumor-free survival has been achieved thus far. CONCLUSION: The case and literature summary can help clinicians and researchers develop appropriate examination and therapeutic methods for diagnosis and treatment of this rare disease.

5.
Int Immunopharmacol ; 112: 109277, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2041839

ABSTRACT

Coronavirus disease 2019 (COVID-19) has caused a global pandemic and presents a significant danger to public health. Lymphopenia is considered to be the defining characteristic of severe COVID-19, especially in elderly people. Lymphopenia has been suggested as a pivotal factor in disease severity. To minimize mortality in COVID-19 patients, it is essential to have a deeper understanding of the processes behind lymphocytopenia. Recently, myeloid-derived suppressor cells (MDSCs) have been confirmed as a key mediator of lymphopenia. MDSCs are characterized by their powerful capacity to suppress T cells and eventually contribute to the course of illness. Targeting these cells may improve the disease prognosis. In this article, we analyze the available research on MDSCs in lymphopenia and discuss their immunopathologic changes and prospective therapeutic targets in patients with COVID-19 lymphocytopenia.


Subject(s)
COVID-19 , Lymphopenia , Myeloid-Derived Suppressor Cells , Humans , Aged , Pandemics , T-Lymphocytes
6.
PLoS One ; 17(8): e0272941, 2022.
Article in English | MEDLINE | ID: covidwho-1993503

ABSTRACT

When coronavirus disease 2019 (COVID-19) became a pandemic, one of most important questions was whether people who smoke are at more risk of COVID-19 infection. A number of clinical data have been reported in the literature so far, but controversy exists in the collection and interpretation of the data. Particularly, there is a controversial hypothesis that nicotine might be able to prevent SARS-CoV-2 infection. In the present study, motivated by the reported controversial clinical data and the controversial hypothesis, we carried out cytotoxicity assays in Vero E6 cells to examine the potential cytoprotective activity of nicotine against SARS-CoV-2 infection and demonstrated for the first time that nicotine had no significant cytoprotective activity against SARS-CoV-2 infection in these cells.


Subject(s)
COVID-19 , Animals , Chlorocebus aethiops , Humans , Nicotine/pharmacology , Pandemics , SARS-CoV-2 , Vero Cells
7.
J Hazard Mater ; 440: 129775, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-1983444

ABSTRACT

Microbially derived dissolved organic nitrogen (mDON) is a major fraction of effluent total nitrogen at wastewater treatment plants with enhanced nutrient removal, which stimulates phytoplankton blooms and formation of toxic nitrogenous disinfection by-products (N-DBPs). This study identified denitrifiers as major contributors to mDON synthesis, and further revealed the molecular composition, influential factors and synthetic microorganisms of denitrification-derived mDON compounds leading to N-DBP formation. The maximum mDON accumulated during denitrification was 8.92% of converted inorganic nitrogen, higher than that of anammox (4.24%) and nitrification (2.76%). Sodium acetate addition at relatively high C/N ratio (5-7) favored mDON formation, compared with methanol and low C/N (1-3). Different from acetate, methanol-facilitated denitrification produced 13-69% more lignin-like compounds than proteins using Orbitrap LC-MS. The most abundant N-DBPs formed from denitrification-derived mDON were N-nitrosodibutylamine and dichloroacetonitrile (13.32 µg/mg mDON and 12.21 µg/mg mDON, respectively). Major amino acids, aspartate, glycine, and alanine were positively correlated with typical N-DBPs. Biosynthesis and degradation pathways of these N-DBP precursors were enriched in denitrifiers belonging to Rhodocyclaceae, Mycobacteriaceae and Hyphomicrobiaceae. As intensive disinfection is applied at worldwide wastewater treatment plants during COVID-19, carbon source facilitated denitrification should be better managed to reduce both effluent inorganic nitrogen and DON, mitigating DON and N-DBP associated ecological risks in receiving waters.


Subject(s)
COVID-19 , Water Pollutants, Chemical , Water Purification , Alanine , Aspartic Acid , Carbon , Denitrification , Disinfection , Dissolved Organic Matter , Glycine , Humans , Lignin , Methanol , Nitrogen/chemistry , Sodium Acetate , Wastewater/analysis , Water Pollutants, Chemical/analysis
8.
Front Cell Infect Microbiol ; 12: 888582, 2022.
Article in English | MEDLINE | ID: covidwho-1963405

ABSTRACT

Host genetic factors have been shown to play an important role in SARS-CoV-2 infection and the course of Covid-19 disease. The genetic contributions of common variants influencing Covid-19 susceptibility and severity have been extensively studied in diverse populations. However, the studies of rare genetic defects arising from inborn errors of immunity (IEI) are relatively few, especially in the Chinese population. To fill this gap, we used a deeply sequenced dataset of nearly 500 patients, all of Chinese descent, to investigate putative functional rare variants. Specifically, we annotated rare variants in our call set and selected likely deleterious missense (LDM) and high-confidence predicted loss-of-function (HC-pLoF) variants. Further, we analyzed LDM and HC-pLoF variants between non-severe and severe Covid-19 patients by (a) performing gene- and pathway-level association analyses, (b) testing the number of mutations in previously reported genes mapped from LDM and HC-pLoF variants, and (c) uncovering candidate genes via protein-protein interaction (PPI) network analysis of Covid-19-related genes and genes defined from LDM and HC-pLoF variants. From our analyses, we found that (a) pathways Tuberculosis (hsa:05152), Primary Immunodeficiency (hsa:05340), and Influenza A (hsa:05164) showed significant enrichment in severe patients compared to the non-severe ones, (b) HC-pLoF mutations were enriched in Covid-19-related genes in severe patients, and (c) several candidate genes, such as IL12RB1, TBK1, TLR3, and IFNGR2, are uncovered by PPI network analysis and worth further investigation. These regions generally play an essential role in regulating antiviral innate immunity responses to foreign pathogens and in responding to many inflammatory diseases. We believe that our identified candidate genes/pathways can be potentially used as Covid-19 diagnostic markers and help distinguish patients at higher risk.


Subject(s)
COVID-19 , Alleles , Asian People , COVID-19/genetics , Genetic Predisposition to Disease , Humans , SARS-CoV-2/genetics
10.
Frontiers in cellular and infection microbiology ; 12, 2022.
Article in English | EuropePMC | ID: covidwho-1887967

ABSTRACT

Host genetic factors have been shown to play an important role in SARS-CoV-2 infection and the course of Covid-19 disease. The genetic contributions of common variants influencing Covid-19 susceptibility and severity have been extensively studied in diverse populations. However, the studies of rare genetic defects arising from inborn errors of immunity (IEI) are relatively few, especially in the Chinese population. To fill this gap, we used a deeply sequenced dataset of nearly 500 patients, all of Chinese descent, to investigate putative functional rare variants. Specifically, we annotated rare variants in our call set and selected likely deleterious missense (LDM) and high-confidence predicted loss-of-function (HC-pLoF) variants. Further, we analyzed LDM and HC-pLoF variants between non-severe and severe Covid-19 patients by (a) performing gene- and pathway-level association analyses, (b) testing the number of mutations in previously reported genes mapped from LDM and HC-pLoF variants, and (c) uncovering candidate genes via protein-protein interaction (PPI) network analysis of Covid-19-related genes and genes defined from LDM and HC-pLoF variants. From our analyses, we found that (a) pathways Tuberculosis (hsa:05152), Primary Immunodeficiency (hsa:05340), and Influenza A (hsa:05164) showed significant enrichment in severe patients compared to the non-severe ones, (b) HC-pLoF mutations were enriched in Covid-19-related genes in severe patients, and (c) several candidate genes, such as IL12RB1, TBK1, TLR3, and IFNGR2, are uncovered by PPI network analysis and worth further investigation. These regions generally play an essential role in regulating antiviral innate immunity responses to foreign pathogens and in responding to many inflammatory diseases. We believe that our identified candidate genes/pathways can be potentially used as Covid-19 diagnostic markers and help distinguish patients at higher risk.

11.
Sustainability ; 14(7):3743, 2022.
Article in English | ProQuest Central | ID: covidwho-1785905

ABSTRACT

Financial anxiety is one of the most stress-causing factors, destabilizing students’ academic activities and performance. This study investigated whether there was any financial anxiety in international students in higher education institutions by comparing students in the USA and mainland China. The study employed a random-effect ordered probit model that utilised a sample size of 3953 international students during the academic years 2017–2019. The findings showed a significantly low rate of financial anxiety among international students in the United States, while international students in China experienced a highly significant financial anxiety as far as academic life was concerned. Additionally, a robustness check using marginal effects in probit showed a positive life satisfaction towards financial behaviour after the study period in the USA, while a negative life satisfaction towards financial behaviour existed in mainland China. Nevertheless, the study put forward vital recommendations to help address this phenomenon and strengthen the relationship between international students and administrators of higher education institutions in both countries.

12.
Signal Transduct Target Ther ; 7(1): 112, 2022 04 02.
Article in English | MEDLINE | ID: covidwho-1773956

ABSTRACT

Critical coronavirus disease 2019 (COVID-19) is associated with high mortality and potential genetic factors have been reported to be involved in the development of critical COVID-19. We performed a genome-wide association study to identify the genetic factors responsible for developing critical COVID-19. 632 critical patients with COVID-19 and 3021 healthy controls from the Chinese population were recruited. First, we identified a genome-wide significant difference of IL-6 rs2069837 (p = 9.73 × 10-15, OR = 0.41) between 437 critical patients with COVID-19 and 2551 normal controls in the discovery cohort. When replicated these findings in a set of 195 patients with critical COVID-19 and 470 healthy controls, we detected significant association of rs2069837 with COVID-19 (p = 8.89 × 10-3, OR = 0.67). This variant surpassed the formal threshold for genome-wide significance (combined p = 4.64 × 10-16, OR = 0.49). Further analysis revealed that there was a significantly stronger expression of IL-6 in the serum from patients with critical COVID-19 than in that from patients with asymptomatic COVID-19. An in vitro assay showed that the A to G allele changes in rs2069837 within IL-6 obviously decreased the luciferase expression activity. When analyzing the effect of this variant on the IL-6 in the serum based on the rs2069837 genotype, we found that the A to G variation in rs2069837 decreased the expression of IL-6, especially in the male. Overall, we identified a genetic variant in IL-6 that protects against critical conditions with COVID-19 though decreasing IL-6 expression in the serum.


Subject(s)
COVID-19 , Interleukin-6/genetics , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide/genetics
13.
J Inflamm Res ; 15: 1471-1481, 2022.
Article in English | MEDLINE | ID: covidwho-1725151

ABSTRACT

PURPOSE: SARS-CoV-2 is extremely infectious, and the incidence of nosocomial infection is conceivably high. We aimed to develop and validate a nomogram to assist monitoring nosocomial SARS-CoV-2 infection in hospitalized patients. PATIENTS AND METHODS: There were 437 COVID-19 hospitalized cases and 420 negative inpatients enrolled from two hospitals in Hubei province, China. We compared the demographic and clinical characteristics of participants between the two groups. Then, LASSO regression and logistic regression were applied to build a nomogram for SARS-CoV-2 infection prediction in the development cohort. Our nomogram was assessed by area under the curve (AUC), calibration curve, decision curve (DCA) and clinical impact curve analysis (CICA). RESULTS: After LASSO regression filtration, eleven laboratory indicators were correlated with SARS-CoV-2 infection. Then, we integrated these features and constructed a nomogram, which showed a high AUC 0.863 (95% CI: 0.834-0.892) in the development cohort with a sensitivity of 80.41% and specificity of 77.38% and 0.813 (95% CI: 0.760-0.866) in validation cohort with a sensitivity of 82.98% and specificity of 70.43%. The calibration plot displayed that the predicted outcomes were in good concordance with the actual observations. DCA and CICA further showed a larger clinical net benefit. CONCLUSION: We constructed and validated a nomogram that integrated eleven laboratory indexes to assist monitoring of nosocomial SARS-CoV-2 infection in hospitalized patients. Our nomogram is remarkably informative for clinical practice, which will be helpful for preventing SARS-CoV-2 further transmission in hospital and avoiding nosocomial infection.

14.
Front Med (Lausanne) ; 8: 678227, 2021.
Article in English | MEDLINE | ID: covidwho-1572291

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, Hubei Province, China in December 2019. At present, COVID-19 has emerged as a global pandemic. The clinical features of this disease are not fully understood, especially the interaction of COVID-19 and preexisting comorbidities and how these together further impair the immune system. In this case study, we report a COVID-19 patient with cirrhosis. A 73-year-old woman with cirrhosis reported a fever and cough on February 6, 2020. CT of the chest indicated an infection in her bilateral lungs. She tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The woman was treated with lopinavir and ritonavir tablets and interferon alpha-2b injection, but there was no obvious effect. Although this patient was basically asymptomatic after 2 days in the hospital, the inflammation of the bilateral lungs was slow to subside as shown in CT of the chest. In addition, the white blood cell count (WBC), absolute neutrophil count, and absolute lymphocyte count remained decreased and the result of real-time reverse transcription polymerase chain reaction (PCR) (rRT-PCR) assay was still positive for SARS-CoV-2 on hospital day 28. After infusion of plasma from a recovered COVID-19 patient four times, the patient tested negative for SARS-CoV-2. She was discharged on March 13, 2020. This patient tested negative for SARS-CoV-2 after infusion of plasma from a recovered COVID-19 patient four times. Cirrhosis could impair the homeostatic role of the liver in the systemic immune response, which may affect the removal of SARS-CoV-2. This could lead to a diminished therapeutic effect of COVID-19. Thus, clinicians should pay more attention to COVID-19 patients with cirrhosis.

15.
Neurol Sci ; 43(1): 67-79, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1474032

ABSTRACT

Coronavirus disease 2019 (COVID-19), the third type of coronavirus pneumonia after severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), is spreading widely worldwide now. This pneumonia causes not only respiratory symptoms but also multiple organ dysfunction, including thrombotic diseases such as ischemic stroke. The purpose of this review is to explore whether COVID-19 is a risk factor for ischemic stroke and its related pathophysiological mechanisms. Based on the high thrombosis rate and frequent strokes of COVID-19 patients, combined with related laboratory indicators and pathological results, the discussion is mainly from two aspects: nerve invasion and endothelial dysfunction. SARS-CoV-2 can directly invade the CNS through blood-borne and neuronal retrograde pathways, causing cerebrovascular diseases. In addition, the endothelial dysfunction in COVID-19 is almost certain. Cytokine storm causes thromboinflammation, and downregulation of ACE2 leads to RAS imbalance, which eventually lead to ischemic stroke.


Subject(s)
Brain Ischemia , COVID-19 , Ischemic Stroke , Stroke , Thrombosis , Brain Ischemia/complications , Humans , Inflammation , SARS-CoV-2 , Thromboinflammation
16.
iScience ; 24(10): 103186, 2021 Oct 22.
Article in English | MEDLINE | ID: covidwho-1446742

ABSTRACT

The COVID-19 pandemic has caused over 220 million infections and 4.5 million deaths worldwide. Current risk factor cannot fully explain the diversity in disease severity. Here, we present a comprehensive analysis of a broad range of patients' laboratory and clinical assessments to investigate the genetic contributions to COVID-19 severity. By performing GWAS analysis, we discovered several concrete associations for laboratory traits and used Mendelian randomization (MR) analysis to further investigate the causality of traits on disease severity. Two causal traits, WBC counts and cholesterol levels, were identified based on MR study, and their functional genes are located at genes MHC complex and ApoE, respectively. Our gene-based analysis and GSEA revealed four interferon pathways, including type I interferon receptor binding and SARS coronavirus and innate immunity. We hope that our work will contribute to studying the genetic mechanisms of disease and serve as a useful reference for COVID-19 diagnosis and treatment.

17.
Commun Biol ; 4(1): 1034, 2021 08 31.
Article in English | MEDLINE | ID: covidwho-1380915

ABSTRACT

COVID-19 has caused numerous infections with diverse clinical symptoms. To identify human genetic variants contributing to the clinical development of COVID-19, we genotyped 1457 (598/859 with severe/mild symptoms) and sequenced 1141 (severe/mild: 474/667) patients of Chinese ancestry. We further incorporated 1401 genotyped and 948 sequenced ancestry-matched population controls, and tested genome-wide association on 1072 severe cases versus 3875 mild or population controls, followed by trans-ethnic meta-analysis with summary statistics of 3199 hospitalized cases and 897,488 population controls from the COVID-19 Host Genetics Initiative. We identified three significant signals outside the well-established 3p21.31 locus: an intronic variant in FOXP4-AS1 (rs1853837, odds ratio OR = 1.28, P = 2.51 × 10-10, allele frequencies in Chinese/European AF = 0.345/0.105), a frameshift insertion in ABO (rs8176719, OR = 1.19, P = 8.98 × 10-9, AF = 0.422/0.395) and a Chinese-specific intronic variant in MEF2B (rs74490654, OR = 8.73, P = 1.22 × 10-8, AF = 0.004/0). These findings highlight an important role of the adaptive immunity and the ABO blood-group system in protection from developing severe COVID-19.


Subject(s)
COVID-19/ethnology , COVID-19/genetics , Ethnicity/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Humans , Introns/genetics , Polymorphism, Single Nucleotide
18.
Cell Discov ; 7(1): 76, 2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1380898

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a broad clinical spectrum of coronavirus disease 2019 (COVID-19). The development of COVID-19 may be the result of a complex interaction between the microbial, environmental, and host genetic components. To reveal genetic determinants of susceptibility to COVID-19 severity in the Chinese population, we performed a genome-wide association study on 885 severe or critical COVID-19 patients (cases) and 546 mild or moderate patients (controls) from two hospitals, Huoshenshan and Union hospitals at Wuhan city in China. We identified two loci on chromosome 11q23.3 and 11q14.2, which are significantly associated with the COVID-19 severity in the meta-analyses of the two cohorts (index rs1712779: odds ratio [OR] = 0.49; 95% confidence interval [CI], 0.38-0.63 for T allele; P = 1.38 × 10-8; and index rs10831496: OR = 1.66; 95% CI, 1.38-1.98 for A allele; P = 4.04 × 10-8, respectively). The results for rs1712779 were validated in other two small COVID-19 cohorts in the Asian populations (P = 0.029 and 0.031, respectively). Furthermore, we identified significant eQTL associations for REXO2, C11orf71, NNMT, and CADM1 at 11q23.3, and CTSC at 11q14.2, respectively. In conclusion, our findings highlight two loci at 11q23.3 and 11q14.2 conferring susceptibility to the severity of COVID-19, which might provide novel insights into the pathogenesis and clinical treatment of this disease.

20.
Front Genet ; 12: 663098, 2021.
Article in English | MEDLINE | ID: covidwho-1268247

ABSTRACT

Symptoms of coronavirus disease 2019 (COVID-19) range from asymptomatic to severe pneumonia and death. A deep understanding of the variation of biological characteristics in severe COVID-19 patients is crucial for the detection of individuals at high risk of critical condition for the clinical management of the disease. Herein, by profiling the gene expression spectrum deduced from DNA coverage in regions surrounding transcriptional start site in plasma cell-free DNA (cfDNA) of COVID-19 patients, we deciphered the altered biological processes in the severe cases and demonstrated the feasibility of cfDNA in measuring the COVID-19 progression. The up- and downregulated genes in the plasma of severe patient were found to be closely related to the biological processes and functions affected by COVID-19 progression. More importantly, with the analysis of transcriptome data of blood cells and lung cells from control group and cases with severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) infection, we revealed that the upregulated genes were predominantly involved in the viral and antiviral activity in blood cells, reflecting the intense viral replication and the active reaction of immune system in the severe patients. Pathway analysis of downregulated genes in plasma DNA and lung cells also demonstrated the diminished adenosine triphosphate synthesis function in lung cells, which was evidenced to correlate with the severe COVID-19 symptoms, such as a cytokine storm and acute respiratory distress. Overall, this study revealed tissue involvement, provided insights into the mechanism of COVID-19 progression, and highlighted the utility of cfDNA as a noninvasive biomarker for disease severity inspections.

SELECTION OF CITATIONS
SEARCH DETAIL